skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Toufanian, Reyhaneh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract Optical metasurfaces have been widely investigated in recent years as a means to tailor the wavefronts of externally incident light for passive device applications. At the same time, their use in active optoelectronic devices such as light emitters is far less established. This work explores their ability to control the radiation properties of a nearby continuous ensemble of randomly oriented incoherent dipole sources via near‐field interactions. Specifically, a film of colloidal quantum dots is deposited on a plasmonic metasurface consisting of a 1D array of metallic nanoantennas on a metal film. The array is designed to introduce a linear phase profile upon reflection, and a bi‐periodic nanoparticle arrangement is introduced to ensure adequate sampling of the desired phase gradient. Highly directional radiation patterns are correspondingly obtained from the quantum dots at an enhanced emission rate. The underlying radiation mechanism involves the near‐field excitation of surface plasmon polaritons at the metal film, and their selective diffractive scattering by the metasurface into well‐collimated beams along predetermined geometrically tunable directions. These results underscore the distinctive ability of metasurfaces to control radiation properties directly at the source level, which is technologically significant for the continued miniaturization and large‐scale integration of optoelectronic devices. 
    more » « less